Package: SPREDA 1.1

SPREDA: Statistical Package for Reliability Data Analysis

The Statistical Package for REliability Data Analysis (SPREDA) implements recently-developed statistical methods for the analysis of reliability data. Modern technological developments, such as sensors and smart chips, allow us to dynamically track product/system usage as well as other environmental variables, such as temperature and humidity. We refer to these variables as dynamic covariates. The package contains functions for the analysis of time-to-event data with dynamic covariates and degradation data with dynamic covariates. The package also contains functions that can be used for analyzing time-to-event data with right censoring, and with left truncation and right censoring. Financial support from NSF and DuPont are acknowledged.

Authors:Yili Hong, Yimeng Xie, and Zhibing Xu

SPREDA_1.1.tar.gz
SPREDA_1.1.zip(r-4.5)SPREDA_1.1.zip(r-4.4)SPREDA_1.1.zip(r-4.3)
SPREDA_1.1.tgz(r-4.4-any)SPREDA_1.1.tgz(r-4.3-any)
SPREDA_1.1.tar.gz(r-4.5-noble)SPREDA_1.1.tar.gz(r-4.4-noble)
SPREDA_1.1.tgz(r-4.4-emscripten)SPREDA_1.1.tgz(r-4.3-emscripten)
SPREDA.pdf |SPREDA.html
SPREDA/json (API)

# Install 'SPREDA' in R:
install.packages('SPREDA', repos = c('https://yili-hong.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.43 score 27 scripts 158 downloads 52 exports 4 dependencies

Last updated 6 years agofrom:0493a23382. Checks:OK: 5 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 27 2024
R-4.5-winNOTEOct 27 2024
R-4.5-linuxNOTEOct 27 2024
R-4.4-winOKOct 27 2024
R-4.4-macOKOct 27 2024
R-4.3-winOKOct 27 2024
R-4.3-macOKOct 27 2024

Exports:ce.dat.prepclmeclscoef.deglmx.MLEcoef.Lifedata.MLEcoefinitial.ftndata.pre.fundeglmxdlevdsevgetCovgetnamesgetRanNamei.spline.xkaplan.meier.locationLifedata.MLElifetime.mlelogLik.Lifedata.MLEm.spline.xmatch.dat.funMIC.splines.basisminiusloglik.ce.xt.levminiusloglik.ce.xt.logisminiusloglik.ce.xt.normminiusloglik.ce.xt.sevminiusloglik.lev.wtsminiusloglik.logis.wtsminiusloglik.normal.wtsminiusloglik.sevminiusloglik.sev.wtsminus.log.lik.nlmeminus.loglik.lmemle.obj.to.fit.objoptim.ftn.2optim.step1.2optim.step2.2plevplot.MICsplinesplotdeglmxprint.deglmxprint.Lifedata.MLEprint.summary.Lifedata.MLEpsevPxqlevqsevrlevrsevsqrt_matsummary.Lifedata.MLExmat.obj.to.xmatxmat.to.cumsum

Dependencies:latticeMatrixnlmesurvival

Readme and manuals

Help Manual

Help pageTopics
Statistical Package for Reliability Data AnalysisSPREDA-package SPREDA
Create an object for cumulative exposurece.dat.prep
Mixed primal-dual bases algorithm for estimation of parameters with restriction.cls
Dynamic covariates for the coating data.Coatingenv
Dynamic covariates for coating dataCoatingout
Functions for estimating parameters in the linear/nonlinear mixed models with dynamic covariates.clme coef.deglmx.MLE coefinitial.ftn data.pre.fun deglmx getCov getnames getRanName match.dat.fun minus.log.lik.nlme minus.loglik.lme mle.obj.to.fit.obj optim.ftn.2 optim.step1.2 optim.step2.2 plot.MICsplines print.deglmx Px sqrt_mat xmat.obj.to.xmat xmat.to.cumsum
i_spline basisi.spline.x
Kaplan-Meier Locationkaplan.meier.location
Parametric Fitting for Lifetime Datacoef.Lifedata.MLE Lifedata.MLE logLik.Lifedata.MLE miniusloglik.ce.xt.lev miniusloglik.ce.xt.logis miniusloglik.ce.xt.norm miniusloglik.ce.xt.sev miniusloglik.lev.wts miniusloglik.logis.wts miniusloglik.normal.wts miniusloglik.sev.wts print.Lifedata.MLE
Calculate MLE for Lifetime Distributionlifetime.mle miniusloglik.sev
M_splines basism.spline.x
Splines basis functionsMIC.splines.basis
The Standard Largest Extreme Value Distributiondlev plev qlev rlev
Plot function for the class of "deglmx".plotdeglmx
Dataset of failure information of Product 2.Prod2.fai.dat
Dataset of covariate information of Produce 2.Prod2.xt.dat
The Standard Smallest Extreme Value Distributiondsev psev qsev rsev
Shock Absorber Failure Datashock
Summaries of "Lifedata.MLE" Objectprint.summary.Lifedata.MLE summary.Lifedata.MLE
Testdatatestdata